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NOMENCLATURE 

u, temperature; 
t, dimensionless time, 43/7; 
r, radial coordinate; 
x, cartesian coordinate, r 2 ; 
ro, position of the solid-liquid interface in radial 

coordinates; 
s, position of the solid-liquid interface in cartesian 

coordinates, ro 2. 

3reek symbols 
fl,7, parameters; 
At, time step; 
Ax, space interval; 
3, time. 

lubscripts 
i,.i, locations in x - t  plane. 

;uperscripts 
k, number of iterations. 

1. I N T R O D U C T I O N  

~'IIE PIIENOMENON of heat conduction with change of phase due 
o melting/freezing occurs in many areas of current practical 
nterest, e.g. the production or melting of ice, the solidification 
,f castings, the preservation of foodstuffs, the penetration of 
rost into the earth, and the ablation of space missiles due to 
.erodynamic heating. As the space domain where the heat 
onduction equation is to be solved changes with time, these 
,roblems are known as 'moving boundary'  or 'Stefan" 
,roblems [1]. The solution of these problems is sought in a 
hanging domain whose shape is not known a priori. Because 
,f this, moving boundary problems cannot be dealt with by 
traightforward analytical methods. A number of methods 
tare been suggested for solving these problems [2-5]. In his 
xcellent book, Rubinstein [6] cites a number of moving 
,oundary problems arising in industry and elsewhere along 
vith the solutions to many of them. The outcome of some 
onferences on this subject are also available [6-8]. 

The authors have proposed a "modified variable time step" 
MVTS) method and an extended version of the method of 
)ouglas and Gallie [9], called the EDG method, for 1-dim. 
~roblems [ 10-12]. In the present paper an attempt is made to 
pply these methods to the problem of solidification inside and 
,utside right circular cylinders. Two sample problems are 
elected for analysis, the first concerned with the solidification 
,f a saturated liquid inside a cylinder with a convective 
oundary condition, the second with solidification outside a 
ylinder under a constant temperature at the fixed surfaces. 
"he methods presented are illustrated in detail with respect to 
he first problem only. The procedure for the second is similar. 

The problem of inward solidification in a cylinder with a 
onvective boundary condition has been.attempted [13-17]. 
n the present paper it has been solved by the two "variable 
'.me step" (VTS) methods (M VTS and EDG) developed by the 
uthors. Although, Goodling and Khader [18] have also 
t)lved this problem by their own VTS method, the present 
"mthods are more systematic and efficient. The numerical 

results are compared with the tabular results of Baxter [15] 
and Tao [ 16]. The second problem of outward solidification of 
a cylinder under a constant surface temperature is also solved 
by the MVTS and EDG methods. The results obtained are 
compared with those of Bell [19], who made use of the heat 
balance integral method in its refined form. The agreement is 
found to be very good in both the cases. 

2. TIlE PROBLEM 

The problem of inward solidification of a liquid, contained 
in an infinitely long circular cylinder, under a convective 
boundary condition may be expressed, in non-dimensional 
form, as 

7 ~ ' = r ~ r ~ , r ~ r )  ' r o ( 3 ) < r < l ,  3 > 0 ;  

with the boundary conditions 

Ou 
- - - = u ] f l ,  r = l ,  z > O ;  

Or 

u(r,x)= 1, O < . r ~ r o ( 3  ), ~>>-0; 

dro du 
dr dr' r ro(3), z > O ;  

and the initial condition 

ro(O) = 1, 

where u(r,z) denotes the temperature of the solid phase at a 
radial distance r from the centre; to(3) is the position of the 
solid-liquid interface, and fl and 7 are parameters. It is 
assumed that the liquid is at its fusion temperature of unity at 
t = O .  

Changing the variables by setting x = r 2, t = 43/7, the 
above system of equations transforms to 

du a ( du'  
= s(,) < ,<  < l, , o; (l) 77 

,Du 
----=td2fl, x = l ,  t > 0 ;  (2) 

ax 

u(x , t )= 1, O<~x<~s(t), t>~O; (3) 

E'u I ds 
dx 7s dt '  x = s(t), t > 0 ;  (4) 

s(0) = 1, (5) 

where s(t) is the corresponding distance of the interface from 
x = O .  

3. OUTLINE OF TIlE METIIODS 

In order to apply a VTS method, the region of interest in the 
problem, 0 ~< x ~< 1.0, is subdivided into, say, n intervals each 
ofwidthAxwithmeshpointsxo = 0 < xl < . . .  < Xn = 1.0,so 
that nAx = 1.0. Consider the time interval Atp(= t p t t - t ~ ) ,  
p = 0 ( l ) n - 1 ,  in which the boundary moves a distance Ax 
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from x = x,_p to x = x,_o,+l I. Any point (xl, t~) in the x - t  
plane is given by 

Assuming that At0,At ~ . . . . .  At1_ t have already been 
calculated and the temperatures up to and including t = t i are 
also known, we wish to compute At I as well as the 
temperatures in the medium at t = t 1+ i,i.e- u~. i + :,i  = n -j(1)n, 
when n,_o+ll.s+ l = 1 from boundary condition (3). The 
details of the methods employed in the present paper are given 
below. 

3.1. Extension o f  Douglas and Gallie" s (EDG) method 
Discretizing the LHS of equation (1) by backward difference 

and the RHS by central difference, at (x~,tl+ O, we obtain 

( l l i , j  + 1 - -  n i , j ) l A t j  = X i  { ( U i -  1. j  + 1 - - 2 l l i . j  + 1 "t" II i  "1-1,1 + 1 ) / [ ( A x ) 2 , ]  } 

+ ( t l i  + l , j  + i - -  h i -  l.j + i )/(2AX), 

which yields 

- r(2xi - Ax) u i_ : j  § t + 2(1 + 2rxi)ui.i § t - r(2x i + Ax)u i + 1 .j § l 

=2ui../, i = n - j ( l ) n - 1  (7) 

where r [ =  A t / ( A x )  2] is different at different time steps. 
In order to compute At i we integrate equation (1) with 

respect to x from s(t) to 1. Making use of boundary conditions 
(2)-(4), this gives 

d f' ds 
"dr =u, u(x, t)dx = - [(1 + r)lr] ~ - u(1, t)/(2#). 

Further integration with respect to t between tj and tj+ : 
provides 

u(x, t i + t)dx-- u(x, tj)dx 
j §  j 

= [(1 +'t) /7]Ax-( l /2f l )u(x~,  ts+ l)Atj, 

where 

and 

5 / = s(tj) 

A x  = s i - 1 i +  i .  

Approximating the integrals by the trapezoidal rule and 
rearranging the terms, we get 

Atj = (2fl/u~.s+ 0{[(1 + ' t ) I ? ] A x + A i - A i +  t}, (8) 

where 

and 

n - I  

A,=[~(u,,-l.l+u,,.,)+i=,,_~o_ini.ilAx, 

I n- I  1 
A j + t =  ~(u~_t/+:l.j+t+U,.l+t)+ ~. ui.j+ l Ax.  

i = n - - j  _J 

The procedure for computing At s and uij+ t, i = n - j (1 )n  
may be followed as described in the earlier papers [10, 11]. At 
the kth iteration, the relevant simultaneous equations become 

u(nk-) {j+ 11.i+ I = 1, (9) 

- r ~k~f2xl- A x ) u ~  t.i § t 

+ 2(1 + 2r xi)ui.i + t -- r (2x i + Ax)u i + 1.1 + 1 : 2u14, 

i = n-- j ( l )n--  1 (10) 

,t.~.)+, = r2tTl(2#T+Ax)], ,~_> 1.1+ I (11) 

where 

The (k + l)th iteration for At I can be written, from equation (8), 
as 

. . . . . .  I + * ) { [ ( I + ? ) / 7 ] A x + A j - - A I + t  } (12) 

where 

and 

' (  " - '  i ]  
A j =  un-j+n~j) + ~ ul. Ax, 

I i = n - ( j - l |  I 

I n-1 1 l (k) (k) (k) Aj+I = ~.(u~-o+l).j+i+un.j+t)+ ~ uij+ 1 Ax. 
l_ i = n - j  2 

The procedure is started by choosing At} ~ equal to Atj_ i 
(calculated at the previous step). 

3.2. Modified Variable Time Step (M VTS)  method 
In this method, proposed by the present authors, the 

simultaneous equations (9)-(11) arc obtained as described in 
Section 3.1. However, in order to compute Atj we make use of 
the.finite difference replacement of the interface condition (4), 
gtvmg 

(sj+ t - s~) /A t  j = - - A x / A t  I = {(s i+ si+ t)7 ~x t~_ti+ ll.j+ l, 

which, on using equation (3), provides the (k + l)th iteration of. 
At j, 

At}k+ 1) = 2 ( A X ) 2 i [ ) , ( S j + 5 1 +  i)(I (k) --u,-i . i+ 1)]. (13) 

In deriving expression (13) an average value ofs is taken. The 
computing procedure is followed exactly in the same manner 
as in the EDG method with the value of Atj being modified by 
equation (13) instead of equation (12). 

4. NUMERICAL RESULTS AND DISCUSSION 

The problem defined by equations (1)-(5) is solved for 
fl = 0.1, 0.5 and 1.0 with ~, = 1.0, 2.0. The EDG and the 
MVTS methods are applied choosing Ax = 0.05 and 0.025, 
i.e. by subdividing the region 0 ~< x ~< 1.0 into 20 and 40 
equal intervals, respectively. Iterations are carried until two 
successive values of At differ by less than 10 -s .  

In order to start the computations the expressions for Ato 
for the EDG and the MVTS methods may be obtained from 
equations (12) and (13) respectively. However, for the sake of 
comparing the results, the starting value At o is taken from 
equation (12) for the MVTS method also. 

Table 1 gives the time required for the complete freezing of 
the cylinder from both methods. Comparative figures are also 
given from Baxter [15] and Tao [ 16]. As may be seen from the 
table, our results compare very well with those of Tao [16]. 

The second problem concerns outward solidification of a 
cylinder when the fixed surface x = 1 is subjected to a constant 
temperatureu = 0for t  > 0.I t isassumedthat thetemperature  
is everywhere unity outside the cylinder at zero time. The time 
taken by the interface to reach various positions from the fixed 
surface x = 1 onwards, are computed with ), = 1.0 taking 
Ax = 0.05 and 0.025. Bell [19] deals with the same problem 
and computes the numerical results by three methods : (i) the 
integral method as suggested by Lardner and Pohle [20], (ii) 
the refinement of the integral method suggested by Bell [19] 
himself, and (iii) the isotherm migration method (IM M) of Dix 
and Cizek [21]. All the results are reproduced in Table 2 with 
our results. A close correspondence may be observed between 
our results and those of Bell [19]. 

Another VTS method has been described by Yuen and 
Kleinman [22]. However, this method, as well as that of 
Goodling and Khader [18], is not strictly iterative and some 
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Table 1. Comparison of time required for the complete freezing of the cylinder for inward 
solidification (Problem 1) 
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Baxter Tao EDG method MVTS method 
fl ), [19] [20] Ax = 0.05 Ax = 0.025 Ax = 0.05 Ax = 0.025 

1.0 1.00 1.045 1.035 1.034 1.055 1.044 
1.0 2.0 1.18 1.243 1.225 1.229 1.245 1.240 

1.0 0.70 0.736 0.730 0.729 0.745 0.737 
0.5 2.0 0.82 0.897 0.884 0.888 0.901 0.897 

1.0 0.42 0.463 0.461 0.460 0.475 0.467 
0.1 2.0 0.52 0.580 0.567 0.573 0.586 0.583 

Table 2. Comparative figures for interface positions at different times for outward solidification (Problem 2) 

Time 

Lardner 
and Bell 1-22] EDG method MVTS method 

Pohle (n = 8) I.M.M. Ax = 0.05 Ax = 0.025 Ax = 0.05 Ax = 0.025 

0.05 1.2526 1.2638 1.2695 1.2567 1.2628 1.2603 1.2646 
0.10 1.3543 1.3672 1.3769 1.3630 1.3693 1.3679 1.3718 
0.50 - -  - -  - -  1.7911 1.7991 1.8014 1.8043 

aanipulations are required when using it. Also it ma)' be 
Jointed out that the EDG method, although very versatile, 
uffers from a drawback in that it uses all the u values for 
stimating At, while in the M VTS method only one value ofu is 
;ecessary to get an improved estimate of At. 
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